Covering dimension in finite-dimensional metric spaces
نویسندگان
چکیده
منابع مشابه
Embedding Finite Metric Spaces in Low Dimension
This paper presents novel techniques that allow the solution to several open problems regarding embedding of finite metric spaces into Lp. We focus on proving near optimal bounds on the dimension with which arbitrary metric spaces embed into Lp. The dimension of the embedding is of very high importance in particular in applications and much effort has been invested in analyzing it. However, no ...
متن کاملCovering compact metric spaces greedily
Abstract. A general greedy approach to construct coverings of compact metric spaces by metric balls is given and analyzed. The analysis is a continuous version of Chvátal’s analysis of the greedy algorithm for the weighted set cover problem. The approach is demonstrated in an exemplary manner to construct efficient coverings of the n-dimensional sphere and n-dimensional Euclidean space to give ...
متن کاملA Simple Metric for Finite Dimensional Vector Spaces
A new metric for subspaces of a finite dimensional vector space V is identified. The metric is determined by the dimensions of M + N and M∩N , where M and N are subspaces of V . Some properties of the metric are derived as well. 2000 Mathematics Subject Classification: 15A03
متن کاملEffective dimension in some general metric spaces
We introduce the concept of effective dimension for a general metric space. Effective dimension was defined by Lutz in (Lutz 2003) for Cantor space and has also been extended to Euclidean space. Our extension to other metric spaces is based on a supergale characterization of Hausdorff dimension. We present here the concept of constructive dimension and its characterization in terms of Kolmogoro...
متن کاملOn Dimension Partitions in Discrete Metric Spaces
Let (W,d) be a metric space and S = {s1 . . . sk} an ordered list of subsets of W . The distance between p ∈ W and si ∈ S is d(p, si) = min{ d(p, q) : q ∈ si }. S is a resolving set forW if d(x, si) = d(y, si) for all si implies x = y. A metric basis is a resolving set of minimal cardinality, named the metric dimension of (W,d). The metric dimension has been extensively studied in the literatur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1973
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1973-0322828-2